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Abstract. In this paper, a technique for optimal noise rejection, based on generalized sampled-
data hold functions is applied to the control of civil engineering structures. The technique consists
in suitably modulating the sampled outputs of the system under control by periodically varying
functions in order to attenuate the effect of the disturbances on the system states to an acceptable
level, by minimizing a quadratic cost function. This minimization is performed by feeding back
the outputs of the system, which are assumed to be corrupted by measurement noise. Moreover, in
the present paper, the robustness properties of the GSHF based optimal regulator is analyzed and
guaranteed stability margins, expressed in terms of elementary cost and system matrices, are
proposed for such a type of optimal regulators. The effectiveness of the method is demonstrated by
various simulation results. The results of the paper can be used to assess the detrimental effect of
noise on the closed-loop system and the tradeoff involved in assuring good sampled-data
performance and sufficient robustness.
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1. Introduction

Active control of structures, after its successful application in numerous
aeronautical structures, where its potential as a versatile tool for the design of
dynamically loaded flexible structures has been proved, has appeared as a new
research field in Structural Mechanics. In this respect, the active control of civil
engineering structures has received much attention in the past. Several well
established control techniques, such as optimal control methods, disturbance

`rejection techniques, H -control methods, etc., have been applied in order to control
civil engineering structures (see [1–7] and references cited therein).

In recent years, many pieces of work treating design issues of linear systems by

* Dedicated to the memory of Professor P.D. Panagiotopoulos with our warmest prayers, may our Lord Jesus
Christ rest his soul.
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periodically time-varying and/or multirate sampled-data controllers have been
reported in the literature [8–20]. The interest for such a type of control strategies is
warranted by the new dimensions of flexibility of the design process offered by
these control schemes, which also provide a series of remarkable advantages over
ordinary time-invariant feedback strategies, such as state feedback, dynamic
compensation and estimator based controllers (for an overview of these advantages
see [12,16]). Among the most interesting control strategies of this type, is feedback
control based on generalized sampled-data hold functions (GSHF). GSHF control
has been proposed first in [12], and subsequently has successfully been applied in
solving a variety of important control problems such as pole assignment [13],
simultaneous controller design [14], exact model matching [15,17], adaptive control
(decoupling, pole placement, model reference control) [16,19,20], intersample

2 4performance analysis [17], mixed H /H control [18], etc.
In particular, in his inspired work [12], Kabamba proposed a GSHF based

periodic controller, which suitably modulates the sampled outputs of the system
under control by periodically varying functions, in order to solve, among other
important control problems, the discrete optimal noise rejection problem for
disturbed linear time-invariant continuous-time systems. Under certain conditions on
the minimality of the system under control, the modulating functions can be tailored
to a given system in such a way that for the sampled closed loop system the
sensitivity of the state vector to disturbances and noise is minimized at the sampling
instants. The solution of the problem proposed in [12] is structurally identical to that
of the Kalman filter. However, the design of the optimal GSHF based regulator
reduces to the solution of only one discrete algebraic Riccati equation, as compared
to the separate solution of two Riccati equations which are necessary for designing
an estimator based optimal regulator by Kalman filtering technique: one relative to
the estimation of the state vector and the other relative to the computation of the
optimal regulator. Obviously, this fact has beneficial influence on the computational
complexity of the optimal noise rejection problem, since the method based on GSHF
enjoys the efficacy of state feedback without the requirement of state estimation. On
the other hand, in [12], the stability robustness of the GSHF based optimal regulator
has been studied and some preliminary results regarding its stability margins have
been presented. The results of [12], regarding stability robustness of multiloop
GSHF based optimal regulators, consist of a certain lower bound for the minimal
singular value of the closed-loop return difference matrix. However, this result is
quite different from those reported in [21], for the case of discrete LQ regulators,
since the proposed bound depends on the solution of the discrete algebraic Riccati
equation associated with the GSHF based optimal noise rejection problem, and has
not been expressed in terms of system and cost matrices as the bounds reported in
[21].

In the present paper, the technique reported in [12] is applied in order to treat the
optimal noise rejection problem in structural control. Our design objective here is to
attenuate the detrimental effect of the disturbances (i.e., earthquake, impact of a ship
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vessel to a bridge pier, etc.) on the system states to an acceptable level, by
minimizing a certain quadratic cost function. This minimization is performed by
feeding back the outputs of the system, which are assumed to be corrupted by
measurement noise. In particular, in the paper, we focus our attention to civil
engineering structures and especially to the IPB 800 three-story, single bay, steel
frame structure. Here, the structure studied, is considered to be assembled from
finite elements obeying linear material laws and its displacements are small. After
selecting a diagonal mass matrix, a continuous-time controllable and observable
state space model of the structure is obtained. Note that controllability and
observability of the continuous-time model of the structure are prerequisites for
being able to apply the GSHF based approach to the structure under control. Several
simulations of the proposed GSHF based technique for optimal noise rejection, are
performed in the paper, for various values of the sampling period and of the
covariance kernels of the disturbance and measurement noise. From these results it
is verified that when the covariance kernel of the disturbance acting on the structure
is small, the regulator gains are small, since the less the level of the disturbance
acting on the system the smaller must be the control effort, for rejecting the
disturbance. Furthermore, large regulator gains are expected when the sampling
period is chosen to be small. On the other hand, small regulator gains are expected
in cases where the covariance kernel of the noise is large. This reveals that the
covariance of the sampled state vector will be large, indicating a poorly regulated
system in this case. Finally, in the present paper, a more thorough analysis of the
robustness properties of the GSHF based optimal regulator is presented. In
particular, the behavior of the regulator’s return difference matrix is investigated,
and new, relatively simple, lower bounds for its minimal singular value, which are
independent of the solution of the Riccati equation, are proposed, along the lines
reported in [21,22]. On the basis of these bounds, new guaranteed stability margins
for GSHF based optimal regulators, as measures of its stability robustness, are
established. The proposed guaranteed stability margins are obtained on the basis of a
fundamental spectral factorization equality, called the GSHF Return Difference
Equality, and are expressed explicitly in terms of the elementary cost and system
matrices. It is worth noticing, at this point, that our investigation on guaranteed
stability margins of the GSHF based optimal regulator, is focused on a broad variety
of important particular cases, for the elementary system and cost matrices. The
reason for such a type of investigation, is due to the fact that, in our case, it is very
difficult (if not impossible) to obtain a universal lower bound for the minimal
singular value of the regulator’s return difference matrix, as in the case of the
continuous-time LQ regulator [23]. This difficulty stems from the entanglement of
the solution of the Riccati equation, in the left hand side of the GSHF Return
Difference Equality. The above theoretical results on robustness analysis of GSHF
based optimal regulators, have been applied, in the paper, in order to obtain
guaranteed stability margins of GSHF controlled civil engineering structures. It is
verified, through simulation, that when the covariance kernel of the noise disturbing
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the system decreases, the robustness of the GSHF based optimal regulator is
ameliorated, since a smaller disturbance covariance kernel correspond to smaller
levels of system disturbances. In these cases, the controller withstands to smaller
system variations, thus leading to a more robust closed-loop system.

2. Optimal noise rejection using generalized sampled-data hold functions

Consider the controllable and observable linear state space system of the form
?
x(t) 5 Ax(t) 1 Bu(t) 1 w(t), y(t) 5 Cx(t), z(kT ) 5 y(kT ) 1 v(kT ) (2.1)0 0 0

n m p nwhere x(t) [ R , u(t) [ R , y(t) [ R and w(t) [ R are the state, control, output
pand disturbance vectors, respectively, T is the sampling period, z(kT ) [ R is a0 0

pdiscrete measurement vector and v(kT ) [ R is a discrete measurement noise0

vector. In (2.1), all the matrices have appropriate dimensions. It is supposed that
w(t) and v(kT ) are stationary zero-mean white Gaussian process with covariance0

kernels

T T
E[w(t)w (t)] 5 R d(t 2 t), t,t [ R E[v(kT )v (,T )]w 0 0

5 R d(k 2 , ), k, , [ N, R . 0v

where by abuse of notation, d( ? ) represents the Dirac function in both the
discrete-time and continuous-time case. System (2.1), will be acted upon by controls
of the form

u(t) 5 F(t)z(kT ), t [ [kT , (k 1 1)T ), k > 0, F(t 1 T ) 5 F(t), for t [ [0, T )0 0 0 0 0

(2.2)

where F(t) is a T -periodic integrable and bounded matrix of appropriate dimension0

representing a hold function. Then, the closed loop system has the form

x[(k 1 1)T ] 5 Fx(kT ) 1 F z(kT ) 1 v(kT ), z(kT ) 5 Cx(kT ) 1 v(kT )0 0 f 0 0 0 0 0

or equivalently,

x[(k 1 1)T ] 5 (F 1 F C)x(kT ) 1 F v(kT ) 1 v(kT )0 f 0 f 0 0

where

T0

F 5 exp(AT ), F 5E exp[A(T 2 l)]BF(l)dl, v(kT )0 f 0 0
0

(k11)T0

5E exp A[(k 1 1)T 2 l] w(l)dl (2.3)h j0
kT0

Relation (2.3) implies that v(kT ) is a stationary zero-mean white Gaussian process0

with covariance kernel
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T
E[v(kT )v (,T )] 5 R d(k 2 , ), k, , [ N, R0 0 v v

T0
T

5E exp[A(T 2 l)]R exp[A (T 2 l)]dl0 w 0
0

The optimal noise rejection problem via GSHF control, treated in this paper, is as
n3nfollows: Given a symmetric positive definite weighting matrix Q [ R and a

sampling period T , find a GSHF based optimal regulator of the form (2.2), in order0

to minimize the following cost function
TJ 5 lim E[x (kT )Qx(kT )]0 0

k→`

The solution of the above problem has been established in [12], and it can be
expressed in terms of a discrete Riccati equation, which resembles the Riccati
equations appearing in discrete Kalman filtering. More precisely, it has been proven
in [12] that, if the triplet (A,B,C) is minimal, then for almost all T . 0, the optimal0

noise rejection problem is solvable. Its solution is
T T 21 ˜F(t) 5 B exp[A (T 2 t)]W (A,B,T )F (2.4)0 0 f

where
T0

T TW(A,B,T ) 5E exp[A(T 2 l)]BB exp[A (T 2 l)]dl,0 0 0
0

T T 21F̃ 5 2 FKC (CKC 1 R )f v

n3nand K [ R is the unique positive definite solution of the discrete Riccati
equation

T T T 21 TFKF 2 FKC (CKC 1 R ) CKF 1 R 2 K 5 0 (2.5)v v

The minimum of the cost function J is then calculated by (see [12] for details)

J 5 tr QKh jmin

Clearly, relation (2.4) provides us a solution to the optimal noise rejection
problem via GSHF control, in the case where the hold function F(t) does not have a
prespecified structure. Our attention is next focused on the special class of the
time-varying T -periodic matrix functions F(t), for which every element of F(t),0

denoted by f (t), is piecewise constant over intervals of length T 5 T /N , with Nij i 0 i i
1[ Z , i.e.

f (t) 5 f , ;t [ [mT , (m 1 1)T )ij ij,m i i

for m 5 0, . . . ,N 2 1. In this case, as it has been shown in [16], the followingi

relation holds

˜ ˆ ˆF 5 BF (2.6)f

where, defining by b the ith column of B,i
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N 21 N 211 mˆ ˆ ˆ ˆ ˆ ˆ ˆB 5 b ? ? ? A b ? ? ? b ? ? ? A b ,1 1 1 m m m

Ti

ˆ ˆˆ ˆA 5 exp(AT ), b 5E exp(Al)b dli i i
0

ˆand where the m 3 p block matrix F has the form

ˆ ˆf ? ? ? f f11 1p ij,N 21i

ˆ ? ˆF 5 , f 5: ? : :ij?3 4 3 4ˆ ˆf ? ? ? f fm1 mp ij,0

T ˆIn this case, ith row f (t) of the matrix F(t) and the ith block row of the matrix Fi

are interrelated as
T ˆ ˆf (t) ? ? ? f (t)f (t) 5 [ ] 5 e f ? ? ? f i1 ipi N 2m i1 ipi

; mT < t , (m 1 1)T for i 5 1, . . . , m and for m 5 0, . . . , N -1, where e [i i i N 2miNiR is the row vector, whose elements are zero except for a unity appearing in the
(N 2 m)th position.i

From the above analysis it becomes clear that in the case where the elements of
F(t), are piecewise constant, the admissible hold function can be obtained on the

ˆ ˆbasis of F. To find matrix F one must solve (2.6). Note that (2.6) is always solvable
if N > n , i 5 1, 2, . . . , m, where n comprise a set of locally minimumi i i

controllability indices of the pair (A,B) (for details see [16]).

3. Stability robustness of the optimal GSHF based regulator

In this Section, our aim will be the study of the robustness properties of the above
GSHF based regulator, designed in order to achieve optimal noise rejection. Our
concern, in this Section, is to analyze, how sensitive the stable modes of the
closed-loop system will be under small variations of the plant parameters and in
particular whether these modes will remain inside the unit circle for such variations.
Our investigation allows suggesting lower bounds for the minimum singular value
of the regulator’s return difference matrix. On the basis of these bounds, guaranteed
stability margins for GSHF based optimal regulators, are established, as measures of
its stability robustness. The proposed stability margins are obtained on the basis of a
fundamental spectral factorization equality, called the GSHF Return Difference
Equality, and are expressed explicitly in terms of the elementary cost and system
matrices. It is worth noticing, at this point, that our investigation on guaranteed
stability margins of the GSHF based optimal regulator, is focused on a variety of
important particular cases, for the elementary system and cost matrices. The reason
for such a type of investigation, is due to the fact that, in our case, it is very difficult
(if not impossible) to obtain a universal lower bound for the minimum singular
value of the regulator’s return difference matrix, as in the case of the continuous-
time LQ regulator [23]. This difficulty stems from the entanglement of the solution
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of the Riccati equation, in the left hand side of the GSHF Return Difference
Equality.

In order to present our results, we first recall some well-known results from
optimal LQ regulation theory. More precisely, it is well known that the eigenvalues

˜of the matrix F 1 F C are the zeros of the return difference matrix V(z) of the formf

21 ˜V(z) 5 I 2 T(z) ; I 2 C(zI 2 F) Ff

at the plant input, where T(z) is the loop transfer function of the plant. Matrix V(z)
satisfies the following fundamental spectral factorization equality, called the GSHF
Return Difference Equality

T 21 T 21 21 T 21 TV (z )(R 1 CKC )V(z) 5 R 1 C(z I 2 F) R (zI 2 F ) Cv v v

For single-input, single-output systems, stability margins are commonly used
measures of the robustness of a feedback loop and can be very easily determined
using Bode or Nyquist diagrams. For multi-input, multi-output systems, stability
margins, for unstructured additive perturbations of the closed-loop, can be obtained
on the basis of the minimum singular value of the return difference matrix on the
stability boundary. The minimum inward and upward gain margins of the GSHF

inbased optimal regulator are defined, in general, to be the positive scalars GM and
upGM for which a simultaneous insertion of gains g , i 5 1, 2 . . . , m, in the ithi

feedback loop of the closed-loop regulator will not destabilize the closed-loop
system if

in upGM < g < GMi

Similarly, the guaranteed phase margin of the regulator is defined to be the scalar
jwiPM for which a simultaneous insertion of the phase factor e , i 5 1, 2, . . . , m, in

the above ith feedback loop will keep the closed-loop stable if

w < PMu ui

In the sequel, let s (M) and s (M) be the maximum and the minimummax min

singular values of a matrix M, respectively. Then, the following Proposition has
been proven in [12,21].

PROPOSITION 3.1. Consider a stable feedback system with loop transfer function
T(z) and return difference V(z) (where we assume positive feedback). Suppose
DT(z) undergoes an additive change DT(z) which preserves the number of unstable
poles of T(z). Then:

Stability is preserved if

s [DT(z)] < s [V(z)],max min

whenever uzu 5 1
If there exists b [ [0,1) such that s[V(z)] > b for uzu 5 1, then multivariable

gain and phase margins are
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2bin 21 up 21 S D]GM 5 (1 1 b ) , GM 5 (1 2 b ) , PM 5 6arccos 1 2 (3.1)2

On the basis of Proposition 3.1, we can establish the following Theorem.

THEOREM 3.1. Suppose that the hypotheses of Proposition 3.1 are satisfied.
Suppose also that matrix F satisfies one of the following properties:

(a) Matrix F is asymptotically stable and s (F) , 1.max

(b) Matrix F is asymptotically stable, its eigenvalues are all distinct and
s (F) > 1.max

The eigenvalues of F are all distinct, none of them lies on the unit circle, but
some of them lie outside this circle. It is further assumed that none of the latter is a
reciprocal of the remaining eigenvalues.

Then, the minimum singular value of V(z) is bounded from below, for uzu 5 1, by
a , whereV

s (R )min v2 ]]]]]]]a 5 ,V 2s (R ) 1 s (C)dmax V max

2 21s (R )[1 2 s (F)] , for Case (a)max v max
2 21s (R )[1 2 n (F)] , for Case (b)max v maxd 5 (3.2)2s (R ) 1 vmax v5]]]]] , for Case (c)2ˆ1 2 r

The scalar n (F) is the maximum absolute value of the eigenvalues of F, andmax

v is defined as

T 2s (V )s (V C )s (R )[n (F) 2 1]max out max out max v max]]]]]]]]]]]]]]v 5 1 / 2 2 1ˆs (F )s (R )s (CV )min out min v min out

where F and V are the diagonal Jordan block of the outside the unit circleout out

eigenvalues of F and the matrix of their coresponding eigenrows, respectively, and
1 ˆV is the conjugate transpose of V . Finally, the scalar r is defined, in the thirdout out

case, as

1
ˆ ]]ˆr ;max r*,H Jr**

where r* is the largest absolute value of the eigenvalues of F inside the unit circle
and r** is the smallest absolute value of the remaining eigenvalues of F. Moreover,
the guaranteed gain and phase margins of the GSHF based optimal regulator are
then obtained by (3.1) with b 5 a .V

Proof: From the results in [12,21] we have
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s (R )min v2 ]]]]]]s [V(z)] > , for uzu 5 1min Ts (R 1 CKC )max v

Using simple singular value properties we obtain

s (R )min v2 ]]]]]]]]]s [V(z)] > , for uzu 5 1 (3.3)min 2s (R ) 1 s (C)s (K)max v max max

Using an argument analogous to that reported in [21], we can easily conclude that

s (K) < dmax

where d is given by (3.2). Therefore, for uzu 5 1, s [V(z)] is bounded from belowmin

by a defined by (3.2). Moreover, since 0 , a , 1, (3.1) can be applied withV V

b 5 a .V

We are also able to establish the following result.

ˆTHEOREM 3.2. Suppose that matrix R of the formv

T 21R̂ 5 C R Cv v

is nonsingular. Then, the minimum singular value of V(z) is bounded from below,
for uzu 5 1, by b , whereV

2s (R ) s (F)s (R )min v max max v2 ]]]]]]] ]]]]]]b 5 , q 5 1 s (R )V 2 2 max vs (R ) 1 s (C)q s (C)max v max min

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5 b .V

Proof: Observe that equation (2.5) can also be written as

T T T 21 TK 5 FKF 1 R 2 FKC (I 1 C KC ) C KFv R R R R

where

1
]2
2C 5 R CR v

ˆSuppose now that matrix R is nonsingular. Then, from the results in [24] wev

have

21 TˆK < FR F 1 Rv v

Therefore,
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21 21T 2ˆ ˆs (K) < s (FR F 1 R ) < s (F)s (R ) 1 s (R )max max v v max max v max v

2 2s (F) s (F)max max]]] ]]]]]< 1 s (R ) 5 1 s (R )max v T 21 max vˆ s (C R C)s (R ) min vmin v

2 2s (F) s (F)s (R )max max max v]]]]]] ]]]]]]< 1 s (R ) 5 1 s (R )2 21 max v 2 max vs (C)s (R ) s (C)min min v min

Hence s (K) < q, s [V(z)] > b and since 0 , b , 1, (3.1) can be appliedmax min V V

with b 5 b .V

ˆIn the case where R is singular, guaranteed stability margins of the GSHF basedv

optimal regulator can be obtained as suggested by the following Theorem.

THEOREM 3.3. Suppose that

2 2 21 21 TˆR . 0 and s (F) , 1 1 s (C )h, h 5 l [F[R 1 R ] F 1 R ]v max min R max v v v

(3.4)

Then, the minimum singular value of V(z) is bounded from below, for uzu 5 1, by
g , whereV

s (R )min v2 ]]]]]]]g 5 ,V 2s (R ) 1 s (C)mmax v max

l (R )max v 2]]]]]]]]m 5 s (F) 1 s (R )2 2 max max v1 1 s (C )h 2 s (F)min R max

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5 g .V

Proof: If (3.4) holds, then K obeys the following inequality [25]

l (R )max v T]]]]]]]]K < FF 1 R2 2 v1 1 s (C )h 2 s (F)min R max

Therefore,

l (R )max v T]]]]]]]]s (K) < s FF 1 Rmax max 2 2 vS D1 1 s (C )h 2 s (F)min R max

l (R )max v 2]]]]]]]]< s (G) 1 s (R ) 5 m (3.5)2 2 max max v1 1 s (C )h 2 s (F)min R max

On the basis of (3.5) we obtain s [V(z)] > g and since 0 , g , 1, (3.1) canmin V V

be applied with b 5 g .V

In the case where it is impossible to obtain the bound g , due to the fact thatV

inequalities (3.4) do not hold, the following Theorem provides us guaranteed
stability margins for the GSHF based optimal regulator.
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THEOREM 3.4. Suppose that

21 T 21 21 Tˆ ˆˆ ˆl [F(I 1 hR ) F ] , 1, h 5 l [F(P 1 R ) F 1 R ] (3.6)max v max v v

21 21 TˆP 5 F(j I 1 R ) F 1 Rv v

]]]]]]]]]]]]]
2 2 2 2 2 2s (F) 1 s (C )l (R ) 2 1 1 [s (F) 1 s (C )l (R ) 2 1] 1 4s (C )l (R )Ïmin max R min v min max R min v max R min v
]]]]]]]]]]]]]]]]]]]]]]j 5 22s (C )max R

Then, the minimum singular value of V(z) is bounded from below, for uzu 5 1, by
d , whereV

s (R )min v2 21 21 Tˆ]]]]]]] ˆd 5 , m 5 s (F(N 1 R ) F ) 1 s (R )V 2 max v max vˆs (R ) 1 s (C)mmax v max

2121 21 T 21 Tˆ ˆˆN 5 F(k I 1 R ) F 1 R , k 5 1 2 l [F(I 1 hR ) F ] l (R )h jv v max v max v

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5 d .V

Proof: If (3.6) holds, then, according to the results reported in [26], the following
upper bound can be obtained for K

21 21 TˆK < F(N 1 R ) F 1 Rv v

Therefore,
21 21 Tˆs (K) < s (F(N 1 R ) F 1 R )max max v v

21 21 Tˆ ˆ< s (F(N 1 R ) F ) 1 s (R ) 5 m (3.7)max v max v

On the basis of (3.7) we obtain s [V(z)] > d and since 0 , d , 1, (3.1) canmin V V

be applied with b 5 d .V

In the particular case where matrix F is asymptotically stable, guaranteed stability
margins for the GSHF based optimal regulator can be obtained as suggested by the
following three Theorems.

THEOREM 3.5. Let F be an asymptotically stable matrix with s (F) , 1. Then,max

the minimum singular value of V(z) is bounded from below, for uzu 5 1, by e ,V

where

s (R ) l (R )min v max v2 2]]]]]]] ]]]]e 5 , p 5 s (F) 1 s (R )V 2 2 max max vs (R ) 1 s (C)p 1 2 s (F)max v max max

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5 e .V

Proof: Let K be the positive definite solution of the following Lyapunov equationL

TK 5 FK F 1 RL L v
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If matrix F is asymptotically stable, then, it is evident that 0 < K < K .L

Therefore,

s (K) < s (K ) (3.8)max max L

If s (F) , 1, then according to the results in [27] we havemax

l (R )max v T]]]]K < FF 1 RL 2 v1 2 s (F)max

Therefore,

l (R )max v T]]]]s (K ) < s [ FF 1 R ]max L max 2 v1 2 s (F)max

l (R )max v T]]]]< s (FF ) 1 s (R )2 max max v1 2 s (F)max

l (R )max v 2]]]]< s (F) 1 s (R ) 5 p2 max max v1 2 s (F)max

Hence, s (K) < p and s [V(z)] > e . Then, since 0 , e , 1, (3.1) can bemax min V V

applied with b 5 e .V

THEOREM 3.6. Let F be asymptotically stable with distinct eigenvalues. Then, the
minimum singular value of V(z) is bounded from below, for uzu 5 1, by z , whereV

Ts (R ) l (M R M)min v max v2 22]]]]]]] ]]]]]z 5 , f 5 s (M)V 2 2 mins (R ) 1 s (C)f 1 2 n (F)max v max max

and M is the nonsingular permutation matrix, defined as

21 TM F M 5 L , L 5 diag l (F) , i 5 1,2, . . . ,nh ji

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5 z .V

Proof: If matrix F is asymptotically stable and diagonalizable, then one can obtain
(see [28] for details)

1T 21 T 21]]]]K < l (M R M)(M ) diag ML max v H J21 2 l (F)i51,2,...,n u ui

Therefore,
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1T 21 T 21]]]]s (K ) < s l (M R M)(M ) diag Mmax L max max vF H J G21 2 l (F)i51,2,...,n u ui

1T 21 T 21]]]]5 l (M R M)s (M ) diag Mmax v maxF H J G21 2 l (F)i51,2,...,n u ui

1T 2 21 ]]]]< l (M R M)s (M )s diagmax v max maxF H JG21 2 l (F)i51,2,...,n u ui

Tl (M R M)max v 22]]]]]5 s (M) 5 f (3.9)2 min1 2 n (F)max

Combining (3.8) and (3.9) yields s (K) < f. Therefore, s [V(z)] > z , andmax min V

since 0 , z , 1, (3.1) can be applied with b 5 z .V V

THEOREM 3.7. Suppose that F is an asymptotically stable and normal matrix.
Then, the minimum singular value of V(z) is bounded from below, for uzu 5 1, by
h , whereV

s (R ) l (R )min v max v2 ]]]]]]] ]]]]]h 5 , c 5V 2 Ts (R ) 1 s (C)c s (I 2 FF )max v max min

Moreover, the guaranteed gain and phase margins of the GSHF based optimal
regulator are then obtained by (3.1) with b 5h .V

Proof: If F is asymptotically stable and normal, then according to the results in [28]
we have

T 21K < l (R )(I 2 FF )L max v

Therefore,
T 21 T 21s (K ) < s [l (R )(I 2 FF ) ] 5 l (R )s [(I 2 FF ) ]max L max max v max v max

l (R )max v]]]]]5 5 c (3.10)Ts (I 2 FF )min

Combining (3.8) and (3.10) yields s (K) < c. Therefore, s [V(z)] >h , andmax min V

since 0 ,h , 1, (3.1) can be applied with b 5h .V V

4. Mathematical modeling of civil engineering structures

As already mentioned, in the present paper the optimal noise rejection problem of
civil engineering structures is investigated using GSHF. In order to fulfil our
investigation, the state space model of our structure is formulated, first, without
control as

¨ ~Md(t) 1 Cd(t) 1 K d(t) 5 q(t) (4.1)S



32 K.G. ARVANITIS ET AL.

q3q q3q q3qwhere M [ R is a mass matrix, C [ R is a damping matrix, K [ R isS
q qa stiffness matrix, q(t) [ R is a load vector, d(t) [ R is a displacement vector,

q q~ ¨d(t) [ R is a velocity vector and d(t) [ R is an acceleration vector. Using the
m~substitution d(t) 5 g(t), in the presence of control forces u(t) [ R , relations (4.1)

can be rewritten as

~~Mg(t) 1 Cg(t) 1 K d(t) 5 q(t) 1 B u(t), d(t) 2 g(t) 5 0S 0

(4.2)

q3mwhere, B [ R is a control forces arrangement matrix. Relations (4.2) can be0

written in a compact matrix form as

~d(t) 0 I d(t) 0 0q3q q3q q3m q3q
5 1 u(t) 1 q(t)F G F GF G F G F G21 21 21 21~g(t) 2 M K 2 M C g(t) M B MS 0

(4.3)

Relation (4.3), may further be written in a standard matrix-vector state space form
as

~x(t) 5 Ax(t) 1 Bu(t) 1 Dq(t) 5 Ax(t) 1 Bu(t) 1 w(t) (4.4a)

n3n n3m n3q n nwhere, for n 5 2q, A [ R , B [ R , D [ R , x(t) [ R and w(t) [ R

have the following forms

0 I 0 0q3q q3q q3m q3q
A 5 , B 5 , D 5 ,F 21 21 G F 21 G F 21G

2 M K 2 M C M B MS 0

d(t) d(t)
x(t) 5 5 , w(t) 5 Dq(t) (4.4b)F G F G~g(t) d(t)

pWe further assume that the p outputs y(t) [ R of the structure are a combination
of some, say r < q, of the displacements and some, say r < q, of the velocities. In1 2

this case, we have y(t) 5 Cx(t), where

ej1 ej2 0r 3q1: ejr1C 5 (4.4c)e i1

ei2 0r 3q2 :
ei r 2

and where, j , j , . . . , j are the indices of the particular displacements of interest1 2 r1

while i , i , ? ? ? , i are the indices of the particular velocities of interest.1 2 r2
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5. Simulation study of the proposed technique

The IPB 800 three-story, single bay, steel frame structure under dynamic loading
q(t) [6] is examined in this Section, as an example of the application of the
technique presented in the previous Sections. For the structure studied here, the
mass of each floor is m 5 16 t, i 5 1,2,3. The other characteristics of the structurei

˜are F 5 670.13 t /m and h 5 3 m, i 5 1,2,3, B 5 I , andi i 0 333

3.2 0 0
C 5 0 3.2 0 .F G

0 0 3.2

With these values, the matrices of the state space description of the structure is
obtained by (4.4), as

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1A 5 ,

2 83.7663 83.7663 0 2 0.2 0 03 483.7663 2 167.5325 83.7663 0 2 0.2 0
0 83.7663 2 167.5325 0 0 2 0.2

0 0 0
0 0 0
0 0 0B 5 D 5 1/16 0 03 40 1/16 0
0 0 1/16

We next apply to the above civil structure the GSHF based optimal regulation
technique presented in Section 2. To this end, we focus our attention to the case
where the outputs of the structure are the velocities of the three stories. In this case,

0 Iwe have C 5 [ ]. It can be easily checked that system with the above state333 333

space matrices is controllable and observable. Therefore, the technique presented in
Section 2, is applicable in the present case. The covariance kernels of w(t) and
v(kT ) are0

0336R 5 , R 5 0.002 3 I . 0 (5.1)F Gw v 3330 0.1 3 I333 333

Selecting Q 5 I , T 5 2.5 sec and applying the proposed technique in the case636 0

where F(t) does not have a prespecified structure, we obtain

2 0.6566 0.0683 0.0486 2 0.0792 2 0.0494 2 0.0276
0.0683 0.6763 0.0197 2 0.0494 2 0.0574 2 0.0218
0.0486 0.0197 0.7249 2 0.0276 2 0.0218 2 0.0298

F 5 2.4930 2 0.6666 0.4863 2 0.6407 0.0782 0.05413 42 0.6666 3.6459 2 1.1529 0.0782 2 0.6648 0.0241
0.4863 2 1.1529 3.1596 0.0541 0.0241 2 0.7189
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52 31 14 2 60 2 28 2 14
35 17 2 28 2 46 2 14

20 2 14 2 14 2 3224K 5 10 3 ,Symmetry 1262 118 903 41234 28
1144

505 400 238
400 343 162
238 162 10524F̃ 5 10 3f 7334 2 505 2 2533 42 505 7586 2 252

2 253 2 252 7839
˜Matrix F presents a certain kind of symmetry and the 3 3 3 regulator matrix F(t)f

is symmetric. In Figs. 1 and 2, the elements f (t) and f (t) of the admissible hold11 23

function F(t), are depicted.
In the case where our objective is to design hold functions with piecewise

constant behavior, one must select N ’s and solve equation (2.6). For example, in theI

case where N 5 N 5 N 5 15, we obtain a symmetric multirate hold function F(t),1 2 3

whose elements f (t) and f (t) are depicted in Figs. 3 and 4. Similar results are11 23

obtained in the case where N ’s have different values. For example in the case wherei

N 5 30, N 5 45 and N 5 60, the elements f (t), f (t) and f (t) of the admissible1 2 3 11 23 32

multirate hold function are depicted in Figs. 5–7. Obviously, in this case the matrix
F(t) is not symmetric, due to different values of N ’s. Moreover, it is obvious that,i

as N → `, the multirate GSHF obtained tends to the unconstrained GSHF depictedi

in Figs. 1, 2. Note that, in all the three cases presented above, the minimum of the
cost function is

J 5 tr KQ 5 tr K 5 0.3747h j h jmin

Our concern, in the sequel, will be the study of the robustness properties of the

Figure 1. The 1-1 entry of F(t) in the case of an unconstrained GSHF and T 5 2.5 sec.0
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Figure 2. Entries 2-3 and 3-2 of F(t) in the case of an unconstrained GSHF and T 5 2.50

sec.

above designed GSHF based optimal regulator. To this end, the results presented in
Section 3, are next applied, in order to obtain guaranteed stability margins for the
regulator. In particular, in the present case, matrix F is asymptotically stable, with
distinct eigenvalues having the values l 5 2 0.56716 j0.5338, l 5 21,2 3,4

0.75336 j0.1977, l 5 2 0.72076 j0.2951 and with s (F) 5 4.9712 . 1.3,4 max

Therefore, in our case, Case (b) of Theorem 3.1 is applicable. On the other hand,
ˆTheorem 3.2 cannot be applied, since, in our case, matrix R is not positive definite.v

2Theorem 3.3 is applicable, since, in our case R . 0 and s (F) 5 24.7124 , 1 1v max
2s (C )h 5 65.8997 (note that h 5 0.1298). Moreover, conditions of Theorem 3.6min R

are satisfied whereas conditions of Theorems 3.4 are not. Finally, Theorem 3.5 is not
applicable, since s (F) . 1, while Theorem 3.7 is not applicable, since F is not amax

normal matrix. Applying Theorems 3.1, 3.3 and 3.4, we obtain the bounds a 5V

Figure 3. The 1-1 entry of F(t) in the case of a multirate GSHF with N 5 N 5 N 5 151 2 3

and T 5 2.5 sec.0
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Figure 4. Entries 2-3 and 3-2 of F(t) in the case of a multirate GSHF with N 5 N 5 N 51 2 3

15 and T 5 2.5 sec.0

0.0875, g 5 0.11 and z 5 0.0219, respectively. On the basis of these bounds, theV V

estimated guaranteed stability margins of the GSHF based optimal regulator are
quite tight and have the values

in 21GM 5 (1 1 g ) 5 0.9009 or 20.9067 dB,ext V

up 21GM 5 (1 2 g ) 5 1.1236 or 1.0125 dBext V

2g VS D]PM 5 6arccos 1 2 5 60.1101 rad or 66.30728g 2

Consider now the case where the covariance kernel

Figure 5. The 1-1 entry of F(t) in the case of a multirate GSHF with N 5 30, N 5 45,1 2

N 5 60 and T 5 2.5 sec.3 0
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Figure 6. The 2-3 entry of F(t) in the case of a multirate GSHF with N 5 30, N 5 45,1 2

N 5 60 and T 5 2.5 sec.3 0

0336
R 5F 22 Gw 0 10 3 I333 333

and all the other parameters remain the same as in the previous optimal design. In
this case, guaranteed stability margins of the GSHF based optimal regulator can be
obtained by applying Theorems 3.1 and 3.6, since the conditions and assumptions of
Theorems 3.2-3.5 and 3.7 are not satisfied. Applying these results, we obtain the
bounds a 5 0.2676 and z 5 0.0692, respectively. On the basis of these bounds,V V

the estimated guaranteed stability margins of the above designed GSHF based
optimal regulator are

Figure 7. The 3-2 entry of F(t) in the case of a multirate GSHF with N 5 30, N 5 45,1 2

N 5 60 and T 5 2.5 sec.3 0
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in 21GM 5 (1 1 a ) 5 0.7889 or 22.0598 dB,ext V

up 21GM 5 (1 2 a ) 5 1.3654 or 2.7053 dBext V

2a V]PM 5 6arccos(1 2 ) 5 60.2684 rad or 615.37978est 2

Clearly, in the present case, the guaranteed stability margins of the GSHF based
regulator are larger than the ones obtained in the previous case. In the case where
the covariance kernel

0336
R 5 ,F 23 Gw 0 10 3 I333 333

the guaranteed stability margins of the regulator, obtained by applying Theorems 3.1
and 3.6 are

in 21GM 5 (1 1 a ) 5 0.6024 or 24.4017 dB,ext V

up 21GM 5 (1 2 a ) 5 2.9405 or 9.3684 dBext V

2a VS D]PM 5 6arccos 1 2 5 60.6725 rad or 638.53278 .est 2

In conclusion, when the covariance kernel R decreases, the robustness of thew

GSHF based optimal regulator is ameliorated. Of course, this fact is expected, since
a smaller covariance kernel R corresponds to a smaller level of the noise disturbingw

the system. Then, the controller has to withstand to smaller system variations, and
hence the closed-loop system becomes more robust. It is also worth noticing, at this
point, that when the covariance kernel R decreases, the regulator’s gains alsow

decrease in magnitude. This can be easily identified by Figs. 8 and 9, wherein the
regulator’s gains f (t) and f (t) are given for the case where11 23

3Figure 8. Hold function f (t) for T 5 2.5 sec and R decreased (R increased) 10 times11 0 w v

compared to (5.5).
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3Figure 9. Gains f (t), f (t) for T 5 2.5 sec and R decreased (R increased) 10 times23 32 0 w v

compared to (5.5).

0336
R 5 .F 24 Gw 0 10 3 I333 333

Clearly, this is due to the fact that, the less the level of the disturbance acting on the
system the smaller must be the control effort, for rejecting the disturbance.

We next consider the case where, the covariance kernel R 5 2 3 I , and all thev 333

other parameters remain the same as in the original optimal design. Then, the
regulator gains f (t) and f (t) are identical to those of Figs. 8 and 9. We can11 23

conclude that, if the covariance kernel R is large, small gains of the hold functionv

F(t) are expected, indicating a poorly regulated system, since, the measurement
noise predominates.

We finally study the impact of the sampling period T on the gain F(t). To this0

end, in what follows, the sampling period is decreased to the value T 5 0.5 sec and0

the covariance kernels maintain the values given by (5.1). In this case, we obtain

12 8 3 29 13 4
8 4 13 19 9

5 4 9 1524K 5 10 3 ,Symmetry 385 2 6 253 4416 2 31
391

2 0.0877 2 0.0593 2 0.0510
2 0.0593 2 0.0794 2 0.0083
2 0.0510 2 0.0083 2 0.0284F̃ 5 .f 0.1235 0.4023 0.73423 40.4023 0.4555 2 0.3320

0.7342 2 0.3320 2 0.2787

The minimum of the cost function is J 5 tr KQ 5 tr K 5 0.1218. Theh j h jmin
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Figure 10. The 1-1 entry of F(t) in the case of T 5 0.5 sec.0

elements f (t) and f (t) of the admissible hold function F(t) are depicted in Figs. 1011 23

and 11, and they are larger than the gains obtained in the case where T 5 2.5 sec.0

This is due to the fact that, choosing a small T yields a small W(A,B,T ) or a small0 0

B̂ (in the case of multirate GSHF). Their inversion produces matrices with large
entries, which are involved in the computation of the gain F(t).

The results of Sections 2 and 3, together with the above observations, can be used
to assess the detrimental effect of noise on the closed-loop system and the tradeoff
involved in assuring good performance and sufficient robustness as well as in
selecting the sampling period T .0

Conclusions

In this paper, the GSHF based technique for optimal noise rejection has been

Figure 11. Entries 2-3 and 3-2 of F(t) in the case of T 5 0.5 sec.0
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applied to structural control and particularly to the IPB 800 three-story, single bay,
steel frame structure. Moreover, an extensive analysis of the robustness properties of
the GSHF based optimal regulator has been presented. The effectiveness of the
method has been illustrated by various simulation results. From these results it has
been recognized that when the covariance kernel of the disturbance acting on the
structure is small, the regulator gains are small, since the less the level of the
disturbance acting on the system the smaller must be the control effort, for rejecting
the disturbance. Furthermore, large regulator gains are expected when the sampling
period is chosen to be small. On the other hand, small regulator gains are expected
in cases where the covariance kernel of the noise is large. This reveals that the
covariance of the sampled state vector will be large, indicating a poorly regulated
system in this case. It has also been concluded, through simulation, that when the
covariance kernel of the noise disturbing the system decreases, the robustness of the
GSHF based optimal regulator is ameliorated, since smaller disturbance covariance
kernel correspond to smaller levels of system disturbances. In these cases, the
controller withstands to smaller system variations, thus leading to a more robust
closed-loop system. Overall, the theoretical and simulation results of the paper give
some new insights to the GSHF control of linear systems and clearly indicate its
effectiveness, when applied to the control of civil engineering structures.
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